
PHP Application Security Checklist

BASIC

□□ Strong passwords are used.
□□ Passwords stored safely.
□□ register_globals is disabled.
□□ Magic quotes is disabled.
□□ Error reporting is disabled.
□□ Server(s) are physically secure.

INPUT

□□ Input from $_GET, $_POST,
$_COOKIE, and $_REQUEST
is considered tainted.

□□ Understood that only some
values in $_SERVER and
$_ENV are untainted.

□□ $_SERVER[‘PHP_SELF’] is
escaped where used.

□□ Input data is validated.
□□ \0 (null) is discarded in input.
□□ Length of input is bounded.
□□ Email addresses are validated.
□□ Application is aware of small,
very large, zero, and negative
numbers. Sci. notation too.

□□ Application checks for
invisible, look-alike, and
combinining characters.

□□ Unicode control characters
stripped out when required.

□□ Outputted data is sanitized.
□□ User-inputted HTML is
santized with HTMLPurifier.

□□ User-inputted CSS is
sanitized using a white-list.

□□ Abusable properties
(position, margin, etc.) are
handled.

□□ CSS escape sequences are
handled.

□□ JavaScript in CSS is
discarded (expressions,
behaviors, bindings).

□□ URLs are sanitized and
unknown and unwanted
protocols are disallowed.

□□ Embedded plugins are
restricted from executing JS.

□□ Embedded plugin files (Flash
movies) are embedded in
a manner so that only the
intended plugin is loaded.

□□ The application uses a safe
encoding.

□□ An encoding is specified
using a HTTP header.

□□ Inputted data is verified to
be valid for your selected
encoding if using an
unsafe encoding.

FILE UPLOADS

□□ Application verifies file type.
□□ User-provided mime type
value is ignored.

□□ Application analyzes
the content of files to
determine their type.

□□ It is understood that a
perfectly valid file can still
contain arbritrary data.

□□ Application checks the file
size of uploaded files.

□□ MAX_FILE_SIZE is not
depended upon.

□□ File uploads cannot
“overtake” available space.

□□ Content is checked for
malicious content.

□□ Application uses a
malware scanner (if req.).

□□ Uploaded HTML files are
displayed securely.

□□ Uploaded files are not moved
to a web-accessible directory.

□□ Extensive path checks are
used when serving files.

□□ Uploaded files are not served
with include().

□□ Uploaded files are served
as an attachment using the
Content-Disposition header.

□□ Application sends the
X-Content-Type-Options:

nosniff header.
□□ Files are not served as
“application/octet-stream”,
“application/unknown”, or
“plain/text” unless necessary.

DATABASE

□□ Data inserted into the
database is properly escaped
or parameterized/prepared
statements are used.

□□ addslashes() is not used.
□□ Application does not have
more privileges to the
database than necessary.

□□ Remote connections to the
database are disabled if they
are unnecessary.

SERVING FILES

□□ User input is not directly used
in a pathname.

□□ Directory traversal is
prevented.

□□ Null (\0) in paths filtered.
□□ Application is aware of “:”

AUTHENTICATION
□□ Bad password throttling.

□□ CAPTCHA is used.
□□ SSL used to prevent MITM.
□□ Passwords are not stored in a
cookie.

□□ Passwords are hashed.
□□ Per-user salts are used.
□□ crypt() is used with
sufficient number of
rounds.

□□ MD5 is not used.
□□ Users are warned about
obvious password recovery
questions.

□□ Account recovery forms do
not reveal email existence.

□□ Pages that send emails are
throttled.

SESSIONS

□□ Sessions only use cookies.
(session.use_only_cookies)

□□ On logout, session data is
destroyed.

□□ Session is recreated on
authorization level change.

□□ Sites on the same server use
different session storage dirs.

3RD-PARTIES
□□ CSRF issues are prevented
with tokens/keys.

□□ Referrers are not relied
upon.

□□ Pages that perform
actions use POST.

□□ Important pages (logout,
etc.) are protected.

□□ Your pages are not written
in a way (i.e. JSON, JS-like)
where they can be included
and read on a remote website
successfully.

□□ Aware that Flash can bypass
referrer checks to load images
and sound files.

□□ The following things will not
reveal significant information
if included remotely:

□□ Images.
□□ Pages that take a longer
time to load.

□□ CSS files.
□□ Existence or ordering of
frames.

□□ Existence of a JS variable.
□□ Detected visit of a URL.

□□ Inclusion of your website
in an inline frame with JS
disabled does not reveal a
threat.

□□ Application uses frame
bursting code and sends the
X-Frame-Options header.

MISCELLANEOUS
□□ A cryptographically secure
PRNG is used for secret
randomly-generated IDs
(activation links, secret IDs,
etc.).

□□ Suhosin is installed or you
are not using rand() or
mt_rand() for this.

□□ Anything that consumes a
lot of resources should be
throttled and limited.

□□ Pages that use 3rd-party
APIs are throttled.

□□ You did not create your own
encryption algorithm.

□□ Arguments to external
programs (i.e. exec()) are
validated.

□□ Generic internal and external
redirect pages are secured.

□□ Precautions taken against
the source code of your PHP
pages being shown due to
misconfiguration.

□□ Configuration and critical files
are not in a web-accessible
directory.

□□ PHP streams are filtered.
□□ Access to files is not
restricted by hiding the files.

□□ Remote files not included
with include().

SHARED HOSTING

□□ Using a secure shared host
where users cannot access
the files of other users.

□□ Aware that fellow shared
hosting users:

□□ Can, if on the same IP
address, issue requests
against your site with
XMLHttpRequest in IE6.

□□ Can access your website
from 127.0.0.1 or ::1.

□□ Can host a server on the
same IP address.

□□ Are not “remote” as far as
your DB is concerned.

□□ Session & file upload
directories are not shared.

SKFind the annotated original at http://sk89q.com/phpsec/
© 2010 sk89q. You are free to reproduce this without modification.

REV 1 / 2010-Apr-11

